Small and large deformation models of post-buckled beams under lateral constraints

Author:

Jiao Pengcheng1,Alavi Amir H2,Borchani Wassim3,Lajnef Nizar4

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA

2. Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA

3. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA

4. Department of Civil and Environmental Engineering, Michigan State University, USA

Abstract

This study aims at theoretically and experimentally investigating the buckling behavior of bilaterally constrained beams with respect to different geometric parameters and conditions. The theoretical models are developed based on small and large deformation theories, respectively. The nonlinear Euler–Bernoulli beam theory is used to form the governing equations. An energy method is introduced to solve the equilibrium beams by minimizing the total potential energy with respect to the weight coefficients of the buckling modes. The theoretical models are compared with experiments. Good agreements are obtained with respect to the force–displacement relationship and deformed beam shape configuration. This study indicates that the small deformation model is insufficient in predicting beam end shortening since the longitudinal displacement is negligible in the model. The large deformation model effectively predicts severe deflection of beams in terms of end shortening and rotation. Parametric studies are carried out to indicate the applicability of the presented models. In particular, the small deformation model is defined as “more applicable” when the difference of the post-buckling response between the small and large deformation models is less than 5% (Diff < 5%), given that its computational cost is generally smaller than the large model. In contrast, when the difference is greater than 5%, the large deformation model is suggested. In the end, a polynomial function is fitted to define the relationship between the ratio of net gap-to-beam length η and highest achievable buckling mode Φ. The presented small and large deformation models are effective in understanding and predicting the post-buckling responses of laterally confined beams under different conditions.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3