An experimentally informed continuum grain boundary model

Author:

Ansari S Syed1ORCID,Acharya Amit2,Alankar Alankar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India

2. Department of Civil and Environmental Engineering and Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

A continuum grain boundary model is developed, which uses experimentally measured grain boundary energy data as a function of misorientation to simulate idealized grain boundary evolution in a one-dimensional (1D) grain array. The model uses a continuum representation of the misorientation in terms of spatial gradients of the orientation as a fundamental field. The grain boundary energy density employed is non-convex in this orientation gradient, based on physical grounds. Simple gradient descent dynamics of the energy are utilized for idealized microstructure evolution, which requires higher-order regularization of the energy density for the model to be well set; the regularization is physically justified. Microstructure evolution is presented using two plausible energy density functions, both defined from the same experimental data: a “smooth” and a “cusp” energy density. Results of grain boundary equilibria and microstructure evolution representing grain reorientation in 1D are presented. The different shapes of the energy density functions representing a common data set are shown to result in different overall microstructural evolution of the system. Mathematically, the constructed energy functional formally is of the Aviles–Giga/Cross–Newell type but with unequal well depths, resulting in a difference in the structural feature of solutions that can be identified with grain boundaries, as well as in the approach to equilibria from identical initial conditions. This study also investigates the metastability of grain boundaries. It supports the general thermodynamics belief that they persist for extended periods before eventually vanishing due to the lowest energy configuration favored by fluctuations over infinite time.

Funder

National Science Foundation OIA-DMR

Aeronautics Research and Development Board

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3