Highly accurate and efficient numerical methods for a problem of heat conduction

Author:

Cho Manki1ORCID

Affiliation:

1. School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA

Abstract

In this work, we present a theoretical basis for the Steklov series expansion methods to reduce and estimate the error of numerical solutions for heat conduction. The meshless spectral method is applied to represent the temperature over the two-dimensional field using the harmonic Steklov eigenfunctions. Error estimates for Steklov approximations are given. With explicit formulae for the Steklov eigenfunctions and eigenvalues, results about the accuracy of the methods for several variables of interest according to the number of eigenfunctions used are described.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Reference14 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the L^2-orthogonality of Steklov eigenfunctions;Electronic Journal of Differential Equations;2022-08-25

2. A novel efficient numerical solution of Laplace equation with mixed boundary conditions;International Journal of Computer Mathematics;2021-08-26

3. Steklov Expansion Method for Regularized Harmonic Boundary Value Problems;Numerical Functional Analysis and Optimization;2020-11-16

4. Steklov approximations of Green’s functions for Laplace equations;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2020-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3