A Beam Projection-Based Modified Gamma Analysis Scheme for Clinically Interpretable Pre-Treatment Dose Verification

Author:

Wang Yiling1ORCID,Yin Gang12,Wang Jie1,Zhao Yue1,Liu Min1,Lang Jinyi1

Affiliation:

1. Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China

2. The First People’s Hospital of Liangshan, Liangshan Yi Autonomous Prefecture, Sichuan, China

Abstract

Purpose: To investigate a novel gamma analysis system for dose verification results in terms of clinical significance. Methods and Materials: The modified scheme redefined the computational domain of the conventional gamma analysis with the projections of beams and the regions of interest (ROI). We retrospectively studied 6 patients with the conventional and the modified gamma analysis schemes while compared their performances. The cold spots ratio of the planning target volume (PTV) and the hot spots ratio of the organs at risk (OAR) were also computed by the modified scheme to assess the clinical significance. Results: The result of the gamma passing rate in the modified method was conformable to that in the conventional method with a cut-off threshold of 5%. The cold spots ratio of PTV and hot spots ratio of OAR were able to be evaluated by the modified scheme. For an introduced 7.1% dose error, the discrimination ratio in gamma passing rate of the conventional method was lower than 2%, while it was improved to 5% by the modified method. Conclusions: The modified gamma analysis scheme had a comparable quality as the conventional scheme in terms of dose inspection. Besides, it could improve the clinical significance of the QA result and provide the assessment for ROI-specific discrepancy. The modified scheme could also be conveniently integrated into the conventional dose verification process, benefiting the less developed regions where high-end 3D dose verification devices are not affordable.

Funder

Chengdu Science and Technology Bureau

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3