Effect of Low-Dose Gamma Radiation and Lipoic Acid on High- Radiation-Dose Induced Rat Brain Injuries

Author:

Abdel-Aziz Nahed1ORCID,Elkady Ahmed A2,Elgazzar Eman M2

Affiliation:

1. Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt

2. Ahmed A. Elkady: Health Radiation Research Department,National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt

Abstract

Aim This work aims to investigate the possible radio-adaptive mechanisms induced by low-dose (LD) whole-body γ-irradiation alone or combined with alpha-lipoic acid (ALA) administration in modulating high-dose (HD) head irradiation–induced brain injury in rats. Materials and Methods Rats were irradiated with LD (.25 Gy) 24 hours prior HD (20 Gy), and subjected to ALA (100 mg/kg/day) 5 minutes after HD and continued for 10 days. At the end of the experiment, animals were sacrificed and brain samples were dissected for biochemical and histopathological examinations. Results HD irradiation-induced brain injury as manifested by elevation of oxidative stress, DNA damage, apoptotic, and inflammatory markers in brain tissue. Histological examination of brain sections showed marked alterations. However, LD alone or combined with ALA ameliorated the changes induced by HD. Conclusion Under the present experimental conditions, LD whole-body irradiation exhibited neuroprotective activity against detrimental effects of a subsequent HD head irradiation. This effect might be due to the adaptive response induced by LD that activated the anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms in the affected animals making them able to cope with the subsequent high-dose exposure. However, the combined LD exposure and ALA supplementation produced a further modulating effect in the HD-irradiated rats.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3