Collaborative Study of Thresholds for Mutagens: Hormetic Responses in Cell Proliferation Tests Using Human and Murine Lymphoid Cells

Author:

Sutou Shizuyo1ORCID,Koeda Akiko2,Komatsu Kana2,Shiragiku Toshiyuki3,Seki Hiroshi4,Kudo Toshiyuki1,

Affiliation:

1. School of Pharmacy, Shujitsu University, Naka-ku, Okayama-shi, Okayama-ken, Japan

2. Ina Research Inc., Ina-shi, Nagano-ken, Japan

3. Tokushima Research Institute, Otsuka Pharmaceutical Co, Ltd, Tokushima-shi, Tokushima-ken, Japan

4. Safety Studies Section, BML Inc, Kawagoe-shi, Saitama-ken, Japan

Abstract

Background: We previously showed that hormetic responses can be established in cell activity tests using human and murine adherent cells. This time, we examined whether hormetic responses can be established in cell proliferation tests using suspended human and murine lymphoid cells. Methods: Human lymphoblastoid cells (TK6) and mouse lymphoma cells (L5178Y) were cultured in multi-well culture plates and treated with mitomycin C, ethyl methansulfonate, hygromycin B, aclarubicin or colchicine at various dose levels and the number of cells was measured at varied times using a flow cytometer. Results: When the ratio of the number of cells treated with a test chemical to those in the negative control was plotted, the dose-response relationship typically showed a reverse U-shaped curve, indicating the occurrence of hormesis and existence of thresholds in cell toxicity. The hormetic responses depended largely on the test chemical, dose level and exposure time. When examining responses over the course of time, a J-shaped or fallen S-shaped curve was also observed. Conclusions: The dose-response relationship showed a reverse U-shaped curve, a hallmark of hormesis, at least some time points for all chemicals tested here, indicating that chemical hormesis can be established in in vitro cell proliferation tests.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3