Valorization of Baker Yeast Industry Waste in Agriculture by Improving Germination and Growth of Barley and Pea

Author:

Aissani Nadhem1ORCID,Aissani Rania2,Ghidaoui Makrem3,Zouidi Ferjeni4,Sebai Hichem1

Affiliation:

1. Laboratory of Functional Physiology and Valorization of Bio resources, High Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia

2. Vitroplant Society, Route el Mahfoura, Manouba, Tunisia

3. G-TEX B CORPORATION SARL, Mahdia, Tunisia

4. Biology Department, Faculty of Sciences and Arts of Muhayil Asir, King Khaled University, Muhayil Asir, Saudi Arabia

Abstract

Industrial waste still present an environmental danger for the nature and survival of all living beings. Among these toxic products, the focus has been on liquid effluents from the baker's yeast industry that cause real environmental problems mainly due to their pollutant load and the release of unpleasant odors. In order to minimize these hazards and to take advantage of these wastes for the sake of our environment, the present work consists on valorizing effluents from the baker's yeast industry on barley ( Hordeum vulgare) and pea ( Pisum sativum), two important agricultural products of Tunisian north-west. Results showed that this waste is characterized by its richness in organic matter, and the presence of proteins traces with high chemical and biochemical oxygen demand (COD and BOD5) values. Diluted effluent at a dose of 2.5 mg/g significantly improves germination of both plant seeds by germination index (GI) calculation, to reach a maximum of 190 ± 17% and 150 ± 14% for barley and pea, respectively. In fertigation experiment, the use of a lower dose of .62 mg/g of diluted effluent promotes plant length to reach 52 ± 4 cm and 45 ± 1.4 cm, respectively, for H. vulgare and P. sativum. Gas chromatography coupled to mass spectrometry (GC-MS) analysis after derivatization showed significant enhancement of auxin production in pea treated with .62 mg/g of cream compared to control with a concentration of 10.60 ± .81 and 8.16 ± .43 ng/gFW, respectively. In another experiment, the irrigation of pea plants with furfural, as major compound of cream, promotes length and auxin production to reach 9.89 ± .56 ng/gFW for a furfural dose of .31 mg/g. This leads us to valorize baker’s yeast effluent as an environment-friendly natural product in pea and barley agricultural and give insight to its mode of action.

Funder

King Khalid University

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3