Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier

Author:

Xu Xiaoting1,Huang Hao2,Tu Yu2,Sun Jiaxing1,Xiong Yaozu1,Ma Chenying1,Qin Songbing1,Hu Wentao2ORCID,Zhou Juying1

Affiliation:

1. Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China

2. State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China

Abstract

The underlying mechanisms of radiation-induced brain injury are poorly understood, although COX-2 inhibitors have been shown to reduce brain injury after irradiation. In the present study, the effect of celecoxib (a selective COX-2 inhibitor) pretreatment on radiation-induced injury to rat brain was studied by means of histopathological staining, evaluation of integrity of blood-brain barrier and detection of the expressions of inflammation-associated genes. The protective effect of celecoxib on human brain microvascular endothelial cells (HBMECs) against irradiation was examined and the potential mechanisms were explored. Colony formation assay and apoptosis assay were undertaken to evaluate the effect of celecoxib on the radiosensitivity of the HBMECs. ELISA was used to measure 6-keto-prostaglandin F1α (6-keto-PGF1α) and thromboxane B2 (TXB2) secretion. Western blot was employed to examine apoptosis-related proteins expressions. It was found that celecoxib protected rat from radiation-induced brain injury by maintaining the integrity of the blood-brain barrier and reducing inflammation in rat brain tissues. In addition, celecoxib showed a significant protective effect on HBMECs against irradiation, which involves inhibited apoptosis and decreased TXB2/6-keto-PGF1α ratio in brain vascular endothelial cells. In conclusion, celecoxib could alleviate radiation-induced brain injury in rats, which may be partially due to the protective effect on brain vascular endothelial cells from radiation-induced apoptosis.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3