Does Green Tea Induce Hormesis?

Author:

Calabrese Edward J.1ORCID,Tsatsakis Aristidis2ORCID,Agathokleous Evgenios3,Giordano James4,Calabrese Vittorio5

Affiliation:

1. Department of Environmental Health Sciences, Morrill Science Center I, University of Massachusetts, Amherst, MA, USA

2. Centre of Toxicology Science and Research, University of Crete, School of Medicine, Crete, Greece

3. Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

4. Department of Neurology and Biochemistry, Georgetown University Medical Center Washington, DC, USA

5. Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy

Abstract

Green tea, and its principal constituent (–)-epigallocatechin-3-gallate (EGCG), are commonly shown to induce biphasic concentration/dose responses in a broad range of cell types, including non-tumor cells, and tumor cell lines. The most active area of research dealt with an assessment of neural cells with application to neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease cell models, often using preconditioning experimental protocols. The general findings demonstrate EGCG-induced hormetic effects resulting in an enhanced acquired resilience within an adaptive and temporally dependent homeodynamic framework. The biphasic dose responses displayed the typical quantitative features of the hormetic dose response with respect to the amplitude and width of the stimulatory response. These findings provide further evidence for the general occurrence of hormetic dose responses with such responses being independent of the biological model, end point, inducing agent, and mechanism. The biphasic nature of these responses has important implications since it suggests optimal dose ranges for end points of public health and therapeutic applications. These findings indicate the need to assess the entire dose-response continuum in order to better define the nature of the dose response, especially in the low-dose zone where such exposures are common in human populations.

Funder

ExxonMobil Foundation

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3