Enhancement of Acylcarnitine Levels in Small Intestine of Abdominal Irradiation Rats Might Relate to Fatty Acid β-Oxidation Pathway Disequilibration

Author:

Liu Hai-Xiang1,Lu Xue1,Zhao Hua1ORCID,Li Shuang1,Gao Ling1ORCID,Tian Mei1ORCID,Liu Qing-Jie1ORCID

Affiliation:

1. China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China

Abstract

Objective This study aims to analyze the alteration of carnitine profile in the small intestine of abdominal irradiation-induced intestinal injury rats and explore the possible reason for the altered carnitine profile. Methods The abdomens of 15 male Sprague Dawley (SD) rats were irradiated with 0, 10, and 15 Gy of 60Co gamma rays. The carnitine profile in the small intestine and plasma samples of SD rats at 72 h after abdominal irradiated with 0 Gy or 10 Gy of 60Co gamma rays were measured by targeted metabolomics. The changes of fatty acid β-oxidation (FAO), including the expression of carnitine palmitoyltransferase 1 (CPT1) and acyl-CoA dehydrogenases, were analyzed in the small intestine samples of SD rats after exposed to 0, 10, and 15 Gy groups. Results There were eleven acylcarnitines in the small intestine and fourteen acylcarnitines in the plasma of the rat model significantly enhanced, respectively (P < .05). The expression level and activity of CPT1 in the small intestine were remarkably increased (P < .05), and the activity of acyl-CoA dehydrogenase in the small intestine was noticeably reduced (P < .01) after abdominal irradiation. Conclusion The enhanced acylcarnitine levels in the small intestine of abdominal irradiation rats might relate to the FAO pathway disequilibration.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3