Gene Signatures for Latent Radiation-Induced Lung Injury Post X-ray Exposure in Mouse

Author:

Zhang Tongtong1ORCID,Zhou Zhaoming23ORCID,Wen Lei4,Shan Changguo4,Lai Mingyao4,Liao Jing2,Zeng Xin2,Yan Gang1,Cai Linbo4,Zhou Meijuan2ORCID,Wang Minghua1

Affiliation:

1. Department of Nuclear Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China

2. Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China

3. Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China

4. Oncology Department, Guangdong Sanjiu Brain Hospital, Guangzhou, China

Abstract

Objective To investigate the X-ray-specific sensitive genes and potential signaling pathways involved in the latent period of radiation-induced lung injury (RILI) in mouse models. Method Mice were randomized into groups for whole thoracic irradiation with a single fraction of 20 Gy X-ray or 12.5 Gy carbon heavy ion. Lungs were harvested 3 weeks after the irradiation, whole RNA was extracted and detected with the genome-wide transcriptional microarrays. Differentially expressed genes (DEGs) were calculated for each group and the X-ray-specific sensitive genes were determined, followed by the gene enrichment analysis of those DEGs exploring the potentially relevant signaling pathways and biological processes in latent RILI. Results Three weeks after irradiation, gene expression levels varied between groups. 76 up-regulated DEGs were determined with mice in the X-ray group and gene ontology enrichment analysis for biological process (GO-BP) obtained several processes which were associated with radiation reaction, mitotic, immune cell chemotaxis or metastasis, immune factors, p53 apoptosis, and tissue remodeling. KEGG signaling pathway enrichment analysis showed that those 76 up-regulated DEGs were enriched in p53, IL-17, FoXO, melanoma, and non-small-cell lung cancer signaling pathways. By comparing the DEGs in X-ray and heavy ion groups, X-ray-specific sensitive genes were determined, the top 10 genes were Adamts9, Aacs, Col6a2, Fdps, Mdk, Mcam, Stbd1, Lbh, Ak3, and Emid1. The expression level of the top 10 genes was found to be significantly higher in the X-ray group than in the control and heavy ion groups. Conclusion Our research determined the X-ray-specific sensitive gene set in mice lungs after exposure to radiation. The gene set could be used as a genetic marker to suggest the latency of RILI. The enrichment analysis results suggested that the relevant signaling pathways were potentially involved in the development of RILI. Further validation of those genes and signaling pathways is needed to confirm these findings.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3