Two-Step Optimization to Develop a Transdermal Film Loaded With Dapoxetine Nanoparticles: A Promising Technique to Improve Drug Skin Permeation

Author:

Ahmed Tarek A.12ORCID,Alay Asmaa M. S.1,Okbazghi Solomon Z.3,Alhakamy Nabil A.1

Affiliation:

1. Faculty of Pharmacy, Department of Pharmaceutics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

2. Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo, Egypt

3. Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, Connecticut, USA

Abstract

Dapoxetine (DPX) is an orally administered drug for the treatment of premature ejaculation (PE). One of the challenges of administering DPX orally as a tablet is its poor bioavailability (ie, 42%) due to extensive first-pass metabolism. Thus, it is vital to develop a new formulation and mode of delivery to achieve the unmet needs of PE treatment. In this study, an optimized DPX polymeric nanoparticle (PNP) was developed and subsequently loaded into a transdermal film. The Box–Behnken design was utilized to optimize 3 formulation factors affecting the particle size and entrapment efficiency (EE) of chitosan (CS)-alginate (ALG) PNPs. A 3-level factorial design was used to study the effect of 2 variables affecting DPX cumulative percent released and percent elongation from transdermal films loaded with DPX-PNPs. Permeation parameters were calculated following ex vivo permeation study through rat skin. Transport of the PNPs across the skin layers was investigated using a fluorescence laser microscope. Results revealed that an optimized PNPs formulation was developed with a particle size 415.94 nm and EE 37.31%. Dapoxetine was successfully entrapped in the polymeric matrix. Chitosan and ALG interacted electrostatically with the studied cross-linking agents to form a polyelectrolyte complex. The ex vivo study illustrated a sustained release profile of DPX with enhanced skin permeation from the film loaded PNPs. Moreover, the PNPs was able to penetrate deeper into skin layers. Therefore, DPX transdermal film developed in this work could be considered as a successful drug delivery with better patient compliance for the treatment of PE.

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3