Foliar Applied Acetylsalicylic Acid Induced Growth and Key-Biochemical Changes in Chickpea (Cicer arietinum L.) Under Drought Stress

Author:

Hussain Iqbal1ORCID,Rasheed Rizwan1,Ashraf Muhammad Arslan1,Mohsin Muhammad2,Shah Syed Muhammad Ali3,Rashid Dr Abid2,Akram Muhammad4ORCID,Nisar Jaweria3ORCID,Riaz Muhammad5

Affiliation:

1. Department of Botany, Government College University Faisalabad Ringgold Standard Institution, Faisalabad, Pakistan

2. Government College University Faisalabad Ringgold Standard Institution, Faisalabad, Pakistan

3. Department of Eastern Medicine and Surgery, Government College University Faisalabad Ringgold Standard Institution, Faisalabad, Pakistan

4. Department of Eastern Medicine, Government College University Faisalabad Ringgold Standard Institution, Government College University Faisalabad, Pakistan

5. University of Sargodha Ringgold Standard Institution, Sargodha, Pakistan

Abstract

The exogenous application of acetylsalicylic acid (ASA) is stated to increase tolerance of plants against different environmental stresses. Therefore, the present study was planned to get insight into ASA-mediated regulation of growth, secondary metabolism, and oxidative defense in 2 chickpea varieties. Ten seeds of 2 chickpea varieties (DG-89 and Bittle-98) were sown in plastic pots containing sandy loam soil with 3 drought stress levels, i.e. wet conditions or flooded water (100% FC) as recommended control, 75% FC, 50% FC and 25% FC for chickpea. The moisture contents were maintained and regularly monitored through the addition of normal irrigation water. The design of experimental was completely randomized with 3 replicates per treatment. Penultimate leaves were harvested with knife after 20 days of foliar spray to observe the effect of exogenously applied ASA (100 mg/L) on growth, and key-biochemical attributes of chickpea plants (DG-89 and Bittle-98) under drought stress regimes. Drought stress regimes caused a substantial decline in shoot (37% and 35%) and root length (67% and 78%), shoot (80% and 76%) and root (62% and 68%) fresh masses, shoot (71% and 63%) and root (77% and 74%) dry masses, leaf area per plant (77% and 80%), chlorophyll a (7% and 45%), chlorophyll b (57% and 42%), total chlorophyll (30% and 39%), total carotenoids (76% and 54%), total anthocyanins (38%), reducing sugar (10% and 57%), total soluble proteins (77% and 44%), total flavonoids (61% and 59%) and total phenolics (58% and 31%) contents in both DG-89 and Bittle-98, respectively. A significant increase in MDA (25%), H2O2 contents (100% and 62%), proline (145% and 131%), and ascorbic acid (133% and 203%) contents was documented in stressed plants of both varieties, respectively. Additionally, drought stress significantly improved the activities of POD (154% and 76%), CAT (87% and 45%) and SOD (248% and 143%) in both varieties. Exogenous application of ASA reduced drought-mediated oxidative stress by reducing MDA (53% and 14%), and H2O2 (84% and 56%) contents, proline contents (50% and 17%) and enhanced the shoot (6% and 25%) and root (43% and 33%) dry masses, leaf area (9% and 10%), chlorophyll a (7% and 32%), b (82% and 81%), and carotenoids (53% and 33%) in both barley cultivars. When plants of chickpea was treated with ASA had greater total anthocyanins (26% and 35%), free amino acids (48% and 28%), ascorbic acid contents (135% and 179%), total soluble proteins (34% and 23%), total flavonoids (58% and 35%) and phenolic (50% and 69%)contents besides the POD (41% and 64%), CAT (23% and 56%) and SOD (73% and 72%) enzymes activities. Plants of DG-89 showed more tolerance to drought stress than that of Bittle-98 as a manifest from higher plant biomasses. Thus, our results showed that foliar-applied ASA is an effective strategy that can be used to improve the tolerance of chickpea plants to drought stress.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3