The Protection Effect of Resveratrol Against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in Mice

Author:

Sun Hao1,Cai Hui1ORCID,Fu Yue2,Wang Qin1,Ji Kaihua1,Du Liqing1,Xu Chang1,Tian Lifang3,He Ningning1ORCID,Wang Jinhan1,Zhang Manman1,Liu Yang1,Wang Yan1,Li Jia4,Liu Qiang1ORCID

Affiliation:

1. Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China

2. National Accreditation Service for Conformity Assessment, China

3. The People’s Hospital of Renqiu City Hebei Province, China

4. Capital Medical University Electric Power Teaching Hospital, Beijing, China

Abstract

With the extensive application of radiotherapy in various cancers, its side effects in tissues adjacent to cancers are garnering much attention. Intestines are sensitive to irradiation due to its rapid proliferation, and irradiation-induced enteric inflammation is common in patients with pelvic peritoneal tumors. Sirt1, class III protein deacetylase, could lead to transcriptional repression of various inflammation-associated genes, and our previous study has proved its relationship with interleukin (IL)-1β. Here we show that resveratrol, the activator of Sirt1, could alleviate the bowel inflammation induced by irradiation and the expression of Sirt1 is consistent with the inflammation level. We further identified in vivo that Sirt1 repress the expression of IL-1β by the repression of NLR Family, Pyrin Domain Containing protein 3 (NLRP3) expression. In conclusion, this study confirms resveratrol acts against radiation-induced inflammatory bowel disease via NLRP-3 inflammasome repression in mice and supports Sirt1 as a potential biomarker and therapy target in intestinal radiation protection.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3