Poly(butylene succinate-co-adipate)/poly(hydroxybutyrate) blend films and their thermal, mechanical and gas barrier properties

Author:

Luoma Enni1ORCID,Rokkonen Teijo1,Tribot Amélie1,Nättinen Kalle2,Lahtinen Jussi1

Affiliation:

1. VTT Technical Research Centre of Finland, Biocomposites and Processing, Tampere, Finland

2. Amcor Flexibles, Valkeakoski, Finland

Abstract

Depleting fossil resources and plastic pollution have generated an increasing demand for development of renewable and biodegradable polymers. Among other applications, packaging films are at the forefront of the scene. Poly(butylene succinate-co-adipate) (PBSA) is an interesting biopolymer due to its flexibility and good processability. However, its poor barrier properties limit the range of applications. On the contrary, poly(hydroxybutyrate) (PHB) biopolymer reveals good barrier performance, as well as stiffness and fast biodegradation rate. However, PHB drawbacks are its brittleness and difficult processability. By physical blending approach, a solution was delivered to overcome the shortcomings of these biopolymers, resulting in tailored properties of the films. PHB improved barrier performance of the blend film while flexible PBSA contributed to easier processability and better ductility. In this study, biobased and biodegradable blend films were produced in pilot-scale. The effects of PBSA/PHB blending were extensively studied by tensile testing, water and oxygen barrier testing, and thermal analysis. PBSA/PHB blend films exhibited improved Young’s modulus in comparison to neat PBSA. With 50 wt% PHB content, modulus of blend film was increased by 554% compared to pure PBSA film. The ductility of blend films decreased as a function of PHB content, becoming completely brittle at 50 wt%. It was found that barrier properties of PBSA/PHB films improved in comparison to neat PBSA. Oxygen transmission test results showed that oxygen permeability decreased as a function of PHB content. Similar trend was observed with water vapour permeation properties.

Funder

European Regional Development Fund

Publisher

SAGE Publications

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3