Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future

Author:

Gnatowski Przemysław1ORCID,Kucińska-Lipka Justyna1

Affiliation:

1. Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland

Abstract

The ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived polymers. This leads to a self-perpetuating emission of greenhouse gases, as human beings developed a lot of synthetic materials to combat climate change derived dysfunctions, which itself endangers human health in a chaotic circular chain. Mitigating issues arising from using synthetic plastics would be possible by imparting biodegradable polymers from renewable resources. Nowadays, sustainable polymers are adopted mostly in emerging fields of medicine, such as 3D printing, tissue engineering of drug delivery systems. Sustainable polymers are particularly useful in otolaryngology, e.g., in the form of nasal drug eluting stents or bone substitutions. Nevertheless, some limitations in wider usage of renewable polymers in surgery should also be underlined, mainly related to lack of legislation, clinical considerations, and also inadequate materials’ circularity. Herein we briefly overviewed commonly used polymers in general surgery and otolaryngology, defined the trends in sustainable polymer usage in these fields, and highlighted the limitations in renewable polymers applications together with possible solutions. What this short review emphasizes, is that the significant increase in interest and demand for sustainable solutions will revolutionize the future of clinical treatments, where contribution to climate change and waste management will be centered in decision making protocols.

Funder

Gdańsk University of Technology

Publisher

SAGE Publications

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3