Synthesis of a bifunctional EDTA–carboxymethyl chitosan derivative and its potential as an adsorbent for the removal of Cu2+ ions from aqueous solutions

Author:

Weerasinghe Kavindya1ORCID,Liyanage Sudantha1ORCID,Kumarasinghe Upul R1ORCID,Cooray Asitha T12ORCID

Affiliation:

1. Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

2. Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

Abstract

Chitosan is a well-studied biomaterial which has been widely used for environmental applications as an efficient natural polymer for the adsorption and removal of metal ions. Owing to its unique properties, chitosan shows good metal-binding behavior toward several different metal ions such as Cu2+, Zn2+, Cd2+, Ni2+, Co2+, and Ca2+. Chemical modifications with the introduction of functional groups have been carried out extensively and thereby producing various chitosan derivatives to increase the selectivity and adsorption capacity toward metal ions. The present work focuses on two such monofunctional derivatives, namely, carboxymethyl chitosan (CMC) and ethylenediaminetetraacetic acid chitosan (EDTA-CS) which have been recognized as excellent adsorbents for metal removal. The main objective of this study was to synthesize a new bifunctional chitosan derivative, namely, ethylenediaminetetraacetic acid–carboxymethyl chitosan (EDTA-CMC) by attaching both carboxymethyl and EDTA functional groups on the polymer backbone and thereby enhancing its metal-binding properties. The bifunctional derivative synthesis was conducted by combining the procedures of synthesis of CMC and EDTA-CS. Newly synthesized EDTA-CMC derivative was characterized by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope analysis, and thermogravimetric analysis. Adsorption properties of EDTA-CMC were investigated with Cu2+ ions which produced an adsorption capacity of 111.90 mg g−1 for 1000.0 mg/L and 12.20 mg g−1 for 10.00 mg/L Cu2+ solutions. The preliminary results revealed that EDTA-CMC is an effective adsorbent than CMC to remove Cu2+ in aqueous samples. The effects of pH, initial concentration, and mass of the adsorbent in the adsorption process were studied. Under the optimized parameters of an adsorbent dosage of 10.00 mg and pH 5.5, a comparable maximum adsorption capacity up to 112.44 mg g−1 was achieved with a 150.00 mg/L of Cu2+ solution. Furthermore, EDTA-CMC showed good adsorption performance even after five cycles of regeneration.

Funder

University of Sri Jayewardenepura

Publisher

SAGE Publications

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3