Polyethylene Terephthalate/Acryl Butadiene Styrene Copolymer Incorporated with Oak Shell, Potassium Sorbate and Egg Shell Nanoparticles for Food Packaging Applications: Control of Bacteria Growth, Physical and Mechanical Properties

Author:

Mousavi Seyyed Mojtaba1,Hashemi Seyyed Alireza2,Amani Ali Mohammad2,Saed Hesam3,Jahandideh Sara4,Mojoudi Fatemeh5

Affiliation:

1. Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

2. Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

3. Department of Chemical Engineering, Payam Noor University, Bandar Abbas, Iran

4. Department of Polymer Engineering, Yazd University, Iran

5. Department of Environment, Faculty of Natural Resources, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

In this study, the effect of renewable and degradable resources including Oak shell, potassium sorbate and egg shell nanoparticles on the overall properties of polyethylene terephthalate (PET)/acryl butadiene styrene (ABS) were investigated. In this regard, the effect of mentioned additives on the mechanical properties, oxygen permeability, water absorption rate and anti-microbial properties of recycled PET/ABS blend were examined. The results revealed that the addition of ABS to PET can lead to an increase in tensile strength, while it can lead to a decrease in the elongation at break and Young's modulus. Moreover, the addition of Oak shell and potassium sorbate to the PET/ABS mixture can enhance the antimicrobial properties. However, these additives can lead to a significant increase in the water absorption and oxygen permeability within the PET/ABS mixture. On the other hand, reinforcement of PET/ABS with egg shell nanoparticles not only improves the mechanical properties of PET/ABS but also can lead to a decrease in the water absorption and oxygen permeability compared with neat PET/ABS. The main aim of this study is to develop anti-bacterial and degradable plastic structures based on recycled PET/ABS to find a solution for recycling plastic based scraps or improving their natural degradability.

Publisher

SAGE Publications

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3