Surface Modified Clay Reinforced Silicon Incorporated Epoxy Hybrid Nanocomposites: Thermal, Mechanical, and Morphological Properties

Author:

Chozhan C. Karikal1,Chandramohan A.2,Alagar M.3

Affiliation:

1. Department of Chemistry, TRP Engineering College (SRM Group), Tiruchirappalli-621 105, Tamil Nadu, India

2. Suthanthira Polytechnic College, Kalayarkovil, Sivagangai-630555, Tamil Nadu, India

3. Centre of Excellence for Advanced Material Manufacturing, Processing and Characterization (CoExAMMPC), VFSTR University, Vadlamudi, Guntur-522 213, India

Abstract

The silicon-containing epoxy/clay nanocomposites were developed by incorporating the surface-modified MMT clay upto 7wt% into Si-epoxy resin. The surface of the montmorillonite (MMT) clay was modified with two surface modifiers namely cetyltrimethylammonium bromide (CTAB) and 3-aminopropyltriethoxysilane (γ-APS). The surface modified clay reinforced Si-epoxy composites were developed in the form of castings, and were characterized for their thermal and mechanical properties. Thermal behaviour of the composites was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data result from the different studies, it is inferred that the surface modified clay reinforced Si-epoxy composites exhibit lower Tg than that of neat epoxy matrix (127°C <165°C). The decomposition temperature for 60% weight loss of clay reinforced Si-epoxy composites is 674–823°C which is higher when compared to that of neat epoxy matrix. For 5wt% clay reinforced Si-epoxy composites, the values of tensile, flexural and impact strength are increased to 26%, 21% and 29% respectively. The storage modulus (E’) is increased from 5932 to 6308 MPa for clay reinforced Si-epoxy resin. XRD analysis confirmed the well-dispersed exfoliated nanocomposites structure.

Publisher

SAGE Publications

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3