Combination of titanium dioxide and polyhedral oligomeric silsesquioxane nanofillers to boost mechanical and rheological properties of polyolefins: Recycling possibility

Author:

Hormozinezhad Farnoosh1ORCID,Ehsani Morteza1,Esmaeili Amin2,Hejna Aleksander3

Affiliation:

1. Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran

2. Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Doha, Qatar

3. Institute of Materials Technology, Poznan University of Technology, Poznan, Poland

Abstract

Recycling of polyolefins has become a on-demand route to avoid its environmental threats. Nevertheless, drop of properties after re-extrusion necessitates use of reinforcing agents to compensate for poor mechanical properties. The incorporation of nanoparticles into plastics can boost their mechanical and rheological properties due to the hard nanocrystalline phases. This study aims to promote and identify a polyolefin-based nanocomposite by combination of TiO2 and polyhedral oligomeric silsesquioxane (POSS) at concentration of 1, 3, and 6 wt% in a twin-screw extruder. The nanocomposites were characterized for mechanical and rheological properties. Overall, the results showed that the mechanical properties were improved by adding particles up to 6 wt% loadings. The magnitude of this effect was dependent on the nanofiller weight fraction and particle size. Well-dispersion and, as a result, enhancing the viscosity, modulus, and hardness in the sample containing 3 wt% TiO2 and 3 wt%. POSS was due to the presence of hydroxyl functional groups on its surface. Glass transition temperature and crystallinity of the samples did not show a significant change due to the neutral role of nanoparticle nucleation in the matrix.

Publisher

SAGE Publications

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3