Rice husk ash: Economical and high-quality natural-based reinforcing filler for linear low-density and high-density polyethylene

Author:

Nazarpour-Fard Hamed1ORCID

Affiliation:

1. Department of Polymer Engineering, Faculty of Engineering, Lorestan University, Khoram-Abad, Iran

Abstract

Rice husk ash (RiHA) was employed as the bio-originated and inexpensive filler prepared from agricultural wastes for reinforcing high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE). X-ray fluorescence (XRF) spectroscopy showed ∼80.82% for the silica content of RiHA as well as the values of other components present in this bio-based filler. The composites were obtained via melt mixing followed by the compression molding by the hot press forming. Characterization of the composites by FT-IR spectroscopy revealed that the filler has the sheer effects on the vibrational bands of the polymers. The usage of X-ray diffraction (XRD) analysis to investigate the d-spacing values and the crystallinity of the samples, exhibited the increase of d-spacing upon reinforcing the polymers with RiHA. The scanning electron microscopy (SEM) images showed an average size of 32 µm for the irregular RiHA particles which uniformly dispersed in the polymeric matrices. The energy dispersive X-ray (EDX) analysis displayed C, O, and Si as the main constituting elements of the composites and alternatively confirmed the well dispersion of the filler particles into the polymer matrices. The mechanical measurements showed the significant improvements in Young’s modulus, yield stress, and hardness results of the polymers after reinforcing with the rice husk ash. For example, Young’s modulus of HDPE was increased ∼15% after incorporating 7 wt.% of RiHA into this polymer. These mechanical properties of the polymers were increased upon increasing the RiHA content, while the parameter of elongation at break was decreased.

Publisher

SAGE Publications

Subject

Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3