Kinking of the Atrioventricular Plane during the Cardiac Cycle

Author:

Goetz Wolfgang A1,Lansac Emmanuel1,Lim Hou-Sen1,Stevens Scott A1,Weber Patricia A1,Duran Carlos MG1

Affiliation:

1. The International Heart Institute of Montana Foundation, St. Patrick Hospital and Health Sciences Center, The University of Montana Missoula, USA

Abstract

Systolic descent of the atrioventricular plane toward the relatively stationary left ventricular apex is well described. As the atrioventricular plane includes two separate valvular units, systolic atrioventricular plane displacement should not be homogenous. In 6 sheep, sonomicrometric crystals were implanted at the base of the right coronary sinus, anterolateral and posteromedial fibrous trigones, posterior mitral annulus, left ventricular apex, and the tips of the anterior and posterior mitral leaflets. The aortomitral angle was calculated and related to simultaneous left ventricular and aortic pressures and mitral valve movement. The aortomitral angle was largest at end diastole (150.73° ± 15.48°). During isovolumic contraction, it narrowed rapidly to 144.90° ± 16.64°, followed by a slower narrowing during ejection until it reached its smallest angle at end systole (139.66° ± 16.78°). During isovolumic relaxation, the aortomitral angle increased to 143.66° ± 16.02° at the beginning of diastole. During the first third of diastole, it narrowed again to 141° ± 16.24° before re-expanding to maximum at end diastole. During systole, the atrioventricular plane descended non-homogeneously toward the apex, with kinking at the hinge between the aortic and mitral annulus plane. This deformation of the atrioventricular plane has relevance in valve surgery.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,General Medicine,Surgery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3