Adaptive Aiding of Human-Robot Teaming

Author:

de Visser Ewart1,Parasuraman Raja1

Affiliation:

1. George Mason University

Abstract

In many emerging civilian and military operations, human operators are increasingly being tasked to supervise multiple robotic uninhabited vehicles (UVs) with the support of automation. As 100% automation reliability cannot be assured, it is important to understand the effects of automation imperfection on performance. In addition, adaptive aiding may help counter any adverse effects of static (fixed) automation. Using a high-fidelity multi-UV simulation involving both air and ground vehicles, two experiments examined the effects of automation reliability and adaptive automation on human-system performance with different levels of task load. In Experiment 1, participants performed a reconnaissance mission while assisted with an automatic target recognition (ATR) system whose reliability was low, medium, or high. Overall human-robot team performance was higher than with either human or ATR performance alone. In Experiment 2, participants performed a similar reconnaissance mission with no ATR, static automation, or with adaptive automation keyed to task load. Participant trust and self-confidence were higher and workload was lower for adaptive automation compared with the other conditions. The results show that human-robot teams can benefit from imperfect static automation even in high task load conditions and that adaptive automation can provide additional benefits in trust and workload.

Publisher

SAGE Publications

Subject

Applied Psychology,Engineering (miscellaneous),Computer Science Applications,Human Factors and Ergonomics

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thematic Analysis of Interviews With U.S. Space Force Guardians on Multi-Agent System Teams in Space;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2024-08-30

2. Digital Partnerships: Understanding Delegation and Interaction With Virtual Agents;Navigating the Metaverse - A Comprehensive Guide to the Future of Digital Interaction [Working Title];2024-08-13

3. Perceptions of Autonomous Robot Teammates During Field Operations;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2024-08-13

4. The Influence of Operator Trust on Human-Robot Interaction Within Teams;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2024-08-10

5. Converging Measures and an Emergent Model: A Meta-Analysis of Human-Machine Trust Questionnaires;ACM Transactions on Human-Robot Interaction;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3