Affiliation:
1. Thales Research and Technology Canada, Québec City, Canada
2. Université Laval, Québec City, Canada
Abstract
Policy capturing is a judgment analysis method that typically uses linear statistical modeling to estimate expert judgments. A variant to this technique is to capture decision policies using data-mining algorithms designed to handle nonlinear decision rules, missing attributes, and noisy data. In the current study, we tested the effectiveness of a decision-tree induction algorithm and an instance-based classification method for policy capturing in comparison to the standard linear approach. Decision trees are relevant in naturalistic decision-making contexts since they can be used to represent “fast-and-frugal” judgment heuristics, which are well suited to describe human cognition under time pressure. We examined human classification behavior using a simulated naval air defense task in order to empirically compare the C4.5 decision-tree algorithm, the k-nearest neighbors algorithm, and linear regression on their ability to capture individual decision policies. Results show that C4.5 outperformed the other methods in terms of goodness of fit and cross-validation accuracy. Decision-tree models of individuals’ judgment policies actually classified contacts more accurately than their human counterparts, resulting in a threefold reduction in error rates. We conclude that a decision-tree induction algorithm can yield useful models for training and decision support applications, and we discuss the application of judgmental bootstrapping in real time in dynamic environments.
Subject
Applied Psychology,Engineering (miscellaneous),Computer Science Applications,Human Factors and Ergonomics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献