The Impact of Increasing Autonomy on Training Requirements in a UAV Supervisory Control Task

Author:

Cummings Mary1ORCID,Huang Lixiao2,Zhu Haibei1,Finkelstein Daniel3,Wei Ran4

Affiliation:

1. Duke University, USA

2. Arizona State University, USA

3. Georgia Institute of Technology, USA

4. Texas A&M University, USA

Abstract

A common assumption across many industries is that inserting advanced autonomy can often replace humans for low-level tasks, with cost reduction benefits. However, humans are often only partially replaced and moved into a supervisory capacity with reduced training. It is not clear how this shift from human to automation control and subsequent training reduction influences human performance, errors, and a tendency toward automation bias. To this end, a study was conducted to determine whether adding autonomy and skipping skill-based training could influence performance in a supervisory control task. In the human-in-the-loop experiment, operators performed unmanned aerial vehicle (UAV) search tasks with varying degrees of autonomy and training. At the lowest level of autonomy, operators searched images and, at the highest level, an automated target recognition algorithm presented its best estimate of a possible target, occasionally incorrectly. Results were mixed, with search time not affected by skill-based training. However, novices with skill-based training and automated target search misclassified more targets, suggesting a propensity toward automation bias. More experienced operators had significantly fewer misclassifications when the autonomy erred. A descriptive machine learning model in the form of a hidden Markov model also provided new insights for improved training protocols and interventional technologies.

Funder

Office of Naval Research

Army Research Laboratory

Publisher

SAGE Publications

Subject

Applied Psychology,Engineering (miscellaneous),Computer Science Applications,Human Factors and Ergonomics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3