Immunohistochemical study of neural stem cell lineage markers in canine brains, gliomas, and a glioma cell line

Author:

Yoshida Kio1ORCID,Chambers James K.1ORCID,Uchida Kazuyuki1

Affiliation:

1. The University of Tokyo, Tokyo, Japan

Abstract

Neural stem cells (NSCs) produce neuron intermediate progenitor cells (nIPC), oligodendrocyte precursor cells (OPCs), and immature astrocytes. To confirm NSC lineages in the normal canine brain and the association of these cells with gliomas, an immunohistochemical study was conducted on fetal and adult canine brains, gliomas, and a glioma cell line. In fetal brains, glial fibrillary acidic protein (GFAP)- and nestin-immunolabeled NSC were observed in the ventricular zone, β-3 tubulin- and/or neuronal nuclei (NeuN)-immunolabeled nIPC in the subventricular zone (SVZ), and platelet-derived growth factor receptor-α (PDGFR-α)- and OLIG2-immunolabeled OPC and GFAP- and OLIG2-immunolabeled immature astrocytes in the SVZ and intermediate zone. Ki-67 immunohistochemistry revealed that nIPC exhibited high proliferative activity. Quiescent nIPC and OPC were observed in adult brains. Among 58 glioma cases including 4 low-grade oligodendrogliomas (LGOGs), 48 high-grade oligodendrogliomas (HGOGs), 1 low-grade astrocytoma, and 5 high-grade astrocytomas (HGACs), immunohistochemical analyses revealed that oligodendrogliomas expressed PDGFR-α and OLIG2, whereas astrocytomas expressed GFAP and OLIG2. HGOG showed significantly higher immunohistochemical scores for NeuN and β-3 tubulin than LGOG. The Ki-67 labeling index was high in PDGFR-α and NeuN-immunolabeled tumor cells, and low in β-3 tubulin- and synaptophysin-immunolabeled cells. A HGOG cell line possessed the same immunohistochemical characteristics as HGOG. In this study, glioma cells with the OPC and IPC immunophenotypes had a higher Ki-67 labeling index, indicating their high proliferative activity. Furthermore, high-grade gliomas showed the characteristics of nIPC and neurons, which may suggest the pluripotent NSC lineage nature of these tumors.

Publisher

SAGE Publications

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3