Deposition, Clearance, and Reinduction of Amyloid A Amyloid in Interleukin 1 Receptor Antagonist Knockout Mice

Author:

Watanabe K.1,Uchida K.1,Chambers J. K.1,Ushio N.1,Nakayama H.1

Affiliation:

1. Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan

Abstract

Amyloid A (AA) amyloidosis is characterized by the extracellular deposition of AA amyloid and results in the irreversible dysfunction of parenchymal organs. In experimental models, AA amyloid deposits are cleared following a decrease in circulating serum amyloid A (SAA) concentrations. Additional inflammatory stimuli during this recovery process may induce more severe amyloid redeposition. In the present study, we confirmed the deposition, clearance, and reinduction of AA amyloid deposits in interleukin 1 receptor antagonist knockout mice (IL-1raKO) and studied the SAA levels and amyloid-enhancing factor activity based on the time-dependent changes of amyloid deposition. Histopathologically, following initial (day 0) injection of amyloid-enhancing factor in combination with an inflammatory stimulus (silver nitrate [AgNO3]), amyloid deposition peaked by day 20, and its deposition gradually decreased after day 35. SAA concentrations in serum were precipitously elevated on day 1 but returned to normal levels by day 10, whereas the SAA dimer was detected in serum after day 45. An additional AgNO3 injection was administered to mice with amyloidosis on day 5, 10, 35, or 50, and all mice developed large amyloid deposits. Amyloid deposition was most severe in mice treated with AgNO3 on day 35. The inoculation of sera from mice with AA amyloidosis, combined with AgNO3, induced AA amyloidosis. Serum samples collected on days 35 and 50, which contained high concentrations of the SAA dimer, induced amyloidosis in a high proportion (83%) of mice. Therefore, increased SAA and/or its dimer in serum during the recovery process may markedly exacerbate the development of AA amyloidosis.

Publisher

SAGE Publications

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3