Congenital Hydrocephalus in Genetically Engineered Mice

Author:

Vogel P.1,Read R. W.1,Hansen G. M.1,Payne B. J.1,Small D.1,Sands A. T.1,Zambrowicz B. P.1

Affiliation:

1. Lexicon Pharmaceuticals, Inc, The Woodlands, Texas

Abstract

There is evidence that genetic factors play a role in the complex multifactorial pathogenesis of hydrocephalus. Identification of the genes involved in the development of this neurologic disorder in animal models may elucidate factors responsible for the excessive accumulation of cerebrospinal fluid in hydrocephalic humans. The authors report here a brief summary of findings from 12 lines of genetically engineered mice that presented with autosomal recessive congenital hydrocephalus. This study illustrates the value of knockout mice in identifying genetic factors involved in the development of congenital hydrocephalus. Findings suggest that dysfunctional motile cilia represent the underlying pathogenetic mechanism in 8 of the 12 lines ( Ulk4, Nme5, Nme7, Kif27, Stk36, Dpcd, Ak7, and Ak8). The likely underlying cause in the remaining 4 lines ( RIKEN 4930444A02, Celsr2, Mboat7, and transgenic FZD3) was not determined, but it is possible that some of these could also have ciliary defects. For example, the cerebellar malformations observed in RIKEN 4930444A02 knockout mice show similarities to a number of developmental disorders, such as Joubert, Meckel-Gruber, and Bardet-Biedl syndromes, which involve mutations in cilia-related genes. Even though the direct relevance of mouse models to hydrocephalus in humans remains uncertain, the high prevalence of familial patterns of inheritance for congenital hydrocephalus in humans suggests that identification of genes responsible for development of hydrocephalus in mice may lead to the identification of homologous modifier genes and susceptibility alleles in humans. Also, characterization of mouse models can enhance understanding of important cell signaling and developmental pathways involved in the pathogenesis of hydrocephalus.

Publisher

SAGE Publications

Subject

General Veterinary

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3