Primary Follicular Dystrophy With Scarring Dermatitis in C57BL/6 Mouse Substrains Resembles Central Centrifugal Cicatricial Alopecia in Humans

Author:

Sundberg J. P.12,Taylor D.3,Lorch G.4,Miller J.1,Silva K. A.1,Sundberg B. A.1,Roopenian D.1,Sperling L.5,Ong D.6,King L. E.2,Everts H.76

Affiliation:

1. The Jackson Laboratory, Bar Harbor, ME, USA

2. Skin Disease Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA

3. Emory University School of Medicine, Atlanta, GA, USA

4. Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA

5. Uniformed Services University, Bethesda, MD, USA

6. Department of Biochemistry

7. Department of Nutrition, The Ohio State University, Columbus, OH, USA

Abstract

A number of C57BL/6 (B6) substrains are commonly used by scientists for basic biomedical research. One of several B6 strain-specific background diseases is focal alopecia that may resolve or progress to severe, ulcerative dermatitis. Clinical and progressive histologic changes of skin disease commonly observed in C57BL/6J and preliminary studies in other closely related substrains are presented. Lesions develop due to a primary follicular dystrophy with rupture of severely affected follicles leading to formation of secondary foreign body granulomas (trichogranulomas) in affected B6 substrains of mice. Histologically, these changes resemble the human disease called central centrifugal cicatrical alopecia (CCCA). Four B6 substrains tested have a polymorphism in alcohol dehydrogenase 4 ( Adh4) that reduces its activity and potentially affects removal of excess retinol. Using immunohistochemistry, differential expression of epithelial retinol dehydrogenase (DHRS9) was detected, which may partially explain anecdotal reports of frequency differences between B6 substrains. The combination of these 2 defects has the potential to make high dietary vitamin A levels toxic in some B6 substrains while not affecting most other commonly used inbred strains.

Publisher

SAGE Publications

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3