Potentiation of Platelet Responses In Vitro by Feline Infectious Peritonitis Virus

Author:

Boudreaux M. K.1,Weiss R. C.1,Toivio-Kinnucan M.1,Spano J. S.1

Affiliation:

1. Auburn University, College of Veterinary Medicine, Department of Pathobiology, and the Scott-Ritchey Research Program, Auburn, AL

Abstract

The effect of feline infectious peritonitis virus (FIPV) on platelet aggregation and 14C-serotonin release induced by threshold levels of four agonists (adenosine diphosphate [ADP], collagen, arachidonic acid, and epinephrine) was examined in vitro in ten specific-pathogen-free cats. Purified suspensions of FIPV added to stirred platelet suspensions (virus to platelet ratio equal to 1:320) 1 minute prior to the addition of agonist potentiated the ADP-induced aggregation response by greater than 100% in seven cats. Platelet 14C-serotonin release was increased by greater than 100% in four cats. Collagen-induced platelet aggregation was enhanced in ten cats while collagen-induced 14C-serotonin release was enhanced in eight cats. Potentiation of arachidonic acid-induced platelet aggregation was observed in three cats, two of which demonstrated enhanced platelet 14C-serotonin release. Although epinephrine-induced platelet aggregation was enhanced in five cats, the samples displayed only fine microaggregates. Enhanced 14C-serotonin release from platelets in response to epinephrine was not demonstrated. Interaction with the outer platelet membrane and internalization of viral particles within the surface-connected open canalicular system were demonstrated by electron microscopy within 5 minutes of the addition of virus to platelet suspensions with or without added agonists. Decreasing the virus concentration by ten- or one hundred-fold abolished the potentiating effect observed previously, while increasing the concentration tenfold resulted in direct platelet activation in the absence of agonist. Although the specific mechanism of FIPV-induced platelet responses in vitro was not established, the ability of virus to directly activate platelets and the rapid potentiation of responses observed at lower virus concentrations suggested that virus-mediated ion fluxes across platelet membranes were involved.

Publisher

SAGE Publications

Subject

General Veterinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3