DAPK1 may be a potential biomarker for arterial aneurysm in clinical treatment and activated inflammation levels in arterial aneurysm through NLRP3 inflammasome by Beclin1

Author:

Wu Senyan1,Lu Wei1ORCID,Cheng Guobing1,Wu Jiawen1,Liao Sheng1,Hu Qiang1,Li Xiaoyang1,Jiang Buping1

Affiliation:

1. Department of Vascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University , Quzhou People’s Hospital, Quzhou, PR China

Abstract

Background Death-associated protein kinase (DAPK1) is one of the positive regulators of apoptosis, and it is widely involved in apoptosis induced by multiple pathways. We examined that the function of DAPK1 in Clinical treatment of arterial aneurysm and its underlying mechanisms. Arterial aneurysm is a common cerebrovascular disease with high disability and fatality rate. Objectives Male C57BL/6 mice or DAPK1−/− mice were injected with 50 mg/kg pentobarbital sodium and then were injected with angiotensin II (AngII) infusion for vivo model. hASMCs (Human artery smooth muscle cell) were treated with murine recombinant IL-6 (20  ng ml−1; Cell Signaling) for vitro model. Results DAPK1 gene, mRNA expression, and protein expression were induced in mice of arterial aneurysm. DAPK1 mRNA expression was increased and Area Under Curve was 0.9075 in patients with arterial aneurysm. Knockout of DAPK1 decreased inflammation and vascular injury in mice model of arterial aneurysm. Beclin1/NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) signal pathway is a critical downstream effector of DAPK1 by TAP production. The regulation of Beclin1 participated in the effects of DAPK1 on inflammation of arterial aneurysm by ATP-dependent NLRP3 inflammasome. The regulation of NLRP3 participated in the effects of DAPK1 on inflammation of arterial aneurysm. Conclusion Collectively, our data indicated that DAPK1 may be a potential biomarker for arterial aneurysm in clinical treatment and activated inflammation levels in arterial aneurysm through NLRP3 inflammasome by Beclin1. DAPK1 might be a key pathogenic event underlying excess inflammation of arterial aneurysm.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3