Neuroprotective effect of miR-204-5p downregulation against isoflurane-induced learning and memory impairment via targeting EphB2 and inhibiting neuroinflammation

Author:

Liu H1ORCID,Wang M1,Xu L1,Li M1,Zhao M1

Affiliation:

1. Anesthesiology Department, Jinan Third People’s Hospital, Jinan, Shandong, People’s Republic of China

Abstract

Background: Isoflurane, one of the most commonly used inhalational anesthetics, is usually used in surgery patients and often causes long-term learning and memory impairment. The aim of this study was to explore the role of microRNA-204-5p (miR-204-5p) in isoflurane-induced learning and memory impairment in rats. Methods: The Morris Water Maze (MWM) test was used to estimate the spatial learning and memory abilities of laboratory rats. Enzyme-linked immunosorbent assay (ELISA) was used to determine interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) concentrations in the hippocampal tissues. The expression level of miR-204-5p was determined by using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The potential target genes of miR-204-5p were predicted and verified by the TargetScan and dual-luciferase reporter assay, respectively. Results: Isoflurane-induced rats showed significantly higher neurological function scores, higher escape latency and shorter time spent in the original quadrant. Isoflurane could significantly induce neuroinflammation, and the expression of miR-204-5p was increased in the hippocampal tissue of rats exposed to isoflurane. Moreover, downregulation of miR-204-5p attenuated the effect of isoflurane treatment on the escape latency and the time in the original quadrant, and inflammatory cytokines level was downregulated by inhibiting the expression of miR-204-5p. EphB2 was verified as a direct target gene of miR-204-5p. Conclusion: Downregulated miR-204-5p exerts protective effects against isoflurane-induced learning and memory impairment via targeting EphB2 and inhibiting neuroinflammation. MiR-204-5p could serve as a potential therapeutic target for the lightening of cognitive dysfunction induced by isoflurane.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3