The role of hepatic antioxidant capacity and hepatobiliary transporter in liver injury induced by isopsoralen in zebrafish larvae

Author:

Zhang Y1,Zhang Y2,Li J13,Chen Y4,Han L1,He Q1,Chu J1,Liu K1

Affiliation:

1. Key Laboratory for Drug Screening Technology, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China

2. Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China

3. Shanxi Medical University, Taiyuan, People’s Republic of China

4. Shandong Normal University, Jinan, People’s Republic of China

Abstract

Isopsoralen is the main component of the Chinese medicine psoralen, which has antitumour activity and can be used for the treatment of osteoporosis. However, the mechanism behind its hepatotoxicity has not yet been elucidated. In this study, the hepatotoxicity of isopsoralen was investigated using zebrafish. Isopsoralen treatment groups of 25, 50 and 100 μM were established. The mortality, liver morphology changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology and mRNA levels of liver injury–related genes in zebrafish larvae were measured. The results showed that isopsoralen resulted in the development of malformed zebrafish, dose-dependent increases in ALT and AST, decreased liver fluorescence and weakened fluorescence intensity. Histopathological examination showed that high-dose isopsoralen caused a large number of vacuolated structures in the larvae liver. The polymerase chain reaction results showed a significant decrease in the mRNA levels of genes related to antioxidant capacity ( lfabp, gstp2 and sod1) and drug transport ( mdr1, mrp1 and mrp2), indicating that isopsoralen significantly inhibited liver antioxidant capacity and drug efflux capacity in zebrafish larvae. Isopsoralen is hepatotoxic to zebrafish larvae via inhibition of drug transporter expression resulting in the accumulation of isopsoralen in the body and decreased antioxidant capacity, leading to liver injury.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3