Salidroside attenuates LPS-induced kidney injury through activation of SIRT1/Nrf2 pathway

Author:

Pan Jiaying1,Zhu Jie1,Li Liang1,Zhang Tao1,Xu Zhenyu1ORCID

Affiliation:

1. Department of Emergency Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China

Abstract

Background Salidroside (SAL) is an anti-inflammatory, antioxidant, anticancer, neuroprotective, and renal protective active ingredient extracted from the Chinese herb. Rhodiola Rosea. However, the role of SAL in kidney injury has not yet been elucidated. The study investigates SAL’s protective effect and mechanism in lipopolysaccharide (LPS)-induced kidney injury. Methods Male C57BL/6 wild-type mice (6–8 weeks old) were intraperitoneally injected with 10 mg/kg LPS for 24 h and SAL (50 mg/kg) 2 h before the LPS injection. Biochemical and TUNNEL staining assay analyses were carried out to assess kidney injury. The Elisa assay analyzed the mRNA expression of NGAL and KIM-1. RT-qPCR and Western blotting measured the mRNA and protein expression of HO-1, NQO1, Beclin1, P62, SIRT1, Nrf2, and PNCA, respectively. Results Our study found that mice co-treated with SAL had significantly reduced blood urea nitrogen (BUN), serum creatinine (Scr), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels in serum of LPS-induced mice. SAL cotreatment potentially decreased the apoptosis rate of kidney tissue and podocytes induced by LPS. SAL significantly reduced the content of malondialdehyde (MDA) and increased superoxide dismutase (SOD) in LPS-treated mice. Autophagy-related proteins Beclin-1 increased but decreased P62 protein expression by cotreatment of SAL in LPS-injected mice. SAL enhanced the Sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression in LPS-induced kidney tissues. Conclusion Our results speculate that SAL protects against LPS-induced kidney injury through activation of the SIRT1/Nrf2 pathway.

Funder

Shanghai Pudong New Area Health System Key Specialty Construction Project

Shanghai Health Commission Research Project

Shanghai Seventh People's Hospital "Beidouxing" Talent Training Project

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3