A review of challenges and prospects of 3D cell-based culture models used for studying drug induced liver injury during early phases of drug development

Author:

Chipangura John K1ORCID,Ntamo Yonela2,Mohr Bert1,Chellan Nireshni23

Affiliation:

1. Faculty of Health Science, University of Cape Town Research Animal Facility, South Africa

2. Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa

3. Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, South Africa

Abstract

Drug-induced liver injury (DILI) is the leading cause of compound attrition during drug development. Over the years, a battery of in-vitro cell culture toxicity tests is being conducted to evaluate the toxicity of compounds prior to testing in laboratory animals. Two-dimensional (2D) in-vitro cell culture models are commonly used and have provided a great deal of knowledge; however, these models often fall short in mimicking natural structures of tissues in-vivo. Testing in humans is the most logical method, but unfortunately there are ethical limitations associated with human tests. To overcome these limitations better human-relevant, predictive models are required. The past decade has witnessed significant efforts towards the development of three-dimensional (3D) in-vitro cell culture models better mimicking in-vivo physiology. 3D cell culture has advantages in being representative of the interactions of cells in-vivo and when validated can act as an interphase between 2D cell culture models and in-vivo animal models. The current review seeks to provide an overview of the challenges that make biomarkers used for detection of DILI not to be sensitive enough during drug development and explore how 3D cell culture models can be used to address the gap with the current models.

Funder

National Research Foundation

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3