Protective effects of alpha-lipoic acid on bleomycin-induced skin fibrosis through the repression of NADPH Oxidase 4 and TGF-β1/Smad3 signaling pathways

Author:

Kocak Ayse12ORCID,Ural Cemre1,Harmanci Duygu1,Oktan Mehmet Asi2ORCID,Afagh Aysan1,Sarioglu Sulen3,Yilmaz Osman4,Birlik Merih5,Akdogan Gul Guner6,Cavdar Zahide1ORCID

Affiliation:

1. Department of Molecular Medicine, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey

2. Department of Internal Medicine, Division of Nephrology, Dokuz Eylul University, School of Medicine, Izmir, Turkey

3. Department of Pathology, Dokuz Eylul University, School of Medicine, Izmir, Turkey

4. Department of Laboratory Animal Science, Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey

5. Department of Internal Medicine, Division of Rheumatology, Dokuz Eylul University, School of Medicine, Izmir, Turkey

6. Department of Biochemistry, Izmir University of Economics, School of Medicine, Izmir, Turkey

Abstract

The aim of this study was to determine the protective effects of alpha-lipoic acid (ALA), which is known as a powerful antioxidant, and the possible related molecular mechanisms that mediate its favorable action on skin fibrosis in the bleomycin (BLM)-induced scleroderma (SSc) model in mice. The experimental design was established with four groups of eight mice: Control, ALA (100 mg/kg), BLM (5 μg/kg), and BLM + ALA group. BLM was administered via subcutaneous ( sc) once a day while ALA was injected intraperitoneally ( ip) twice a week for 21 days. Histopathological and biochemical analyses showed that ALA significantly reduced BLM-induced dermal thickness, inflammation score, and mRNA expression of tumor necrosis factor-alpha (TNF-α) in the skin. Besides, the mRNA expressions of the subunits of NADPH oxidase, which are Nox4 and p22phox, were found to be significantly induced in the BLM group. However, ALA significantly reduced their mRNA expression, which were in parallel to its decreasing effect on serum total oxidant status (TOS) level. Moreover, it was found that ALA downregulated the mRNA expressions of alpha-smooth muscle actin (α-SMA), collagen type I and fibronectin in the skin tissue of the BLM group. Additionally, it was shown that ALA reduced significantly the TGF-β1 and p-Smad3 protein expressions in the BLM + ALA group. On the other hand, ALA did not exhibit any significant effect on the p38 mitogen-activated kinase (MAPK) activation induced by BLM. All these findings point out that ALA may be a promising treatment for the attenuation of skin fibrosis in SSc patients.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3