Toxicity assessment of hydroxyapatite nanoparticles in rat liver cell model in vitro

Author:

Sonmez E12,Cacciatore I3,Bakan F4,Turkez H35,Mohtar YI6,Togar B7,Stefano AD3

Affiliation:

1. Department of Physics, Faculty of K. K. Education, Atatürk University, Erzurum, Turkey

2. Advanced Materials Research Laboratory, Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey

3. Department of Pharmacology, G. D’Annunzio University, Chieti, Italy

4. SUNUM, Sabanci University, Tuzla, Istanbul, Turkey

5. Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey

6. Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

7. Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey

Abstract

Hydroxyapatite nanoparticles (HAP NPs) are widely used for preparations of biomedical and biotechnological fields such as drug delivery, gene therapy, and molecular imaging. However, the current toxicological knowledge about HAP NPs is relatively limited. The present study was designed to investigate the toxicity potentials of various concentrations (0–1000 µg cm−2) of HAP NPs in cultured primary rat hepatocytes. Cell viability was detected by 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed via scoring liver micronuclei rates and determining 8-oxo-2-deoxyguanosine (8-OH-dG) levels. The results of MTT and LDH assays showed that the higher concentrations of dispersed HAP NPs (300, 500, and 1000 µg cm−2) decreased cell viability. Also, HAP NPs increased TOS (500 and 1000 µg cm−2) levels and decreased TAC (300, 500, and 1000 µg cm−2) levels in cultured hepatocytes. On the basis of increasing doses, the NPs as depending on dose caused significant increases of the number of micronucleated hepatocytes and 8-OH-dG levels as compared to control culture. Furthermore, the highest concentration of HAP NPs (1000 µg cm−2) exhibited cytotoxic activity. Based on these results, HAP NPs have a dose-dependent toxic effect in rat hepatocytes. Further extensive research in this field is promising and reasonable.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3