Selected transient receptor potential channel genes’ expression in peripheral blood mononuclear cells of multiple sclerosis

Author:

Çakır Murat1,Saçmacı Hikmet2,Sabah-Özcan Seda3

Affiliation:

1. Department of Physiology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, Turkey

2. Department of Neurology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, Turkey

3. Department of Medical Biology, Faculty of Medicine, University of Manisa Celal Bayar, Manisa, Turkey

Abstract

Transient receptor potential channels have responsibilities in many cellular processes such as cytokine production, cell differentiation, and cytotoxicity by affecting intracellular cation levels or intracellular signal pathways. Multiple sclerosis is a chronic autoimmune central nervous system (CNS) disease caused by environmental and genetic factors. In this study, we aim to investigate TRPV1-TRPV4, TRPM2, TRPM4, TRPM7, TRPC6, and TRPA1 mRNA expression levels, which are associated with the inflammatory process, in the peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) patients. Thirty-five healthy controls and age–gender matched thirty patients with RRMS were involved in the study. TRPC6, TRPA1, TRPM2, TRPM4, TRPM7, TRPV1, TRPV2, TRPV3, and TRPV4 PBMCs mRNA expression levels were determined by qPCR. In the present study, the TRPC6, TRPM7, TRPV1, TRPV3, and TRPV4 mRNA expressions of RRMS patients in PBMCs decreased at a significant level compared to the healthy control group ( p = .000, p = .000, p = .044, p = .000, p = .004, respectively). The decreased expression of TRPC6, TRPM7, TRPV1, TRPV3, and TRPV4 in PBMCs may be associated with the pathogenesis of MS. Further studies are required to understand the mechanism of the relation between these TRP channels and MS and other autoimmune diseases.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systemic inflammatory markers in patients with polyneuropathies;Frontiers in Immunology;2023-02-13

2. Function and regulation of thermosensitive ion channel TRPV4 in the immune system;Role of TRPV4 Channels in Different Organ Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3