Identification and characterization of differentially expressed lncRNA in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate

Author:

Gao L-Y1ORCID,Hao X-L2,Zhang L1,Wan T3,Liu J-Y2,Cao J1

Affiliation:

1. School of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China

2. Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, People’s Republic of China

3. School of Basic Medical, Jiujiang University, Jiujiang, People’s Republic of China

Abstract

2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) is a ubiquitous environmental pollutant and also a strong teratogen for cleft palate (CP). But up to now, the underlying molecular mechanisms of TCDD-induced CP are largely unknown. More recently, accumulating evidences are revealing important roles of long noncoding RNAs (lncRNAs) in all kinds of diseases including CP. However, the role and molecular mechanism of lncRNAs in TCDD-induced CP are still largely unexplored. Thus, identification of differentially expressed lncRNA (DEL) might help figuring out the mechanism of CP induced by TCDD. In this study, a CP offspring model of C57BL/6 female mice was generated by TCDD (64 µg/kg body weight) induce on embryo day 10 (E10). The incidence rate of CP was 100% in the TCDD group (105) after cervical dislocation on E16. Then, the high-throughput RNA sequencing (RNA-seq) was established to search a comprehensive profile of the lncRNAs. In addition, a coexpression network of lncRNA and messenger RNA (mRNA) was performed to discern potential mechanism. The result showed that 26,246 novel lncRNAs and 9635 known lncRNAs were screened out, and 413 lncRNA transcripts and 65 mRNA transcripts were identified as being significantly different between the CP group and control group. Notably, we found that there are seven lncRNAs that can target Smad1 and Smad5, which are key molecules of bone morphogenetic protein (BMP) signaling pathway, which suggested that they may be concerned with BMP signaling in TCDD-induced CP. In addition, some lncRNAs targeted the important molecules of Hippo and Wnt signaling pathways. These results suggested that characteristic lncRNA alterations may play a critical role in TCDD-induced CP, which provided a theoretical basis for further research.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3