Testosterone induces apoptosis in cardiomyocytes by increasing proapoptotic signaling involving tumor necrosis factor-α and renin angiotensin system

Author:

do Nascimento AM1,de Lima EM1,Boëchat GAP1,Meyrelles SDS2,Bissoli NS2,Lenz D1,Endringer DC1,de Andrade TU1

Affiliation:

1. Department of Pharmacy, University Vila Velha, Espírito Santo, Brazil

2. Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brazil

Abstract

Anabolic androgenic steroids lead to cardiac complications and have been shown to exhibit proapoptotic effects in cardiac cells; however, the mechanism involved in those effects is unclear. The aim of this study was to assess whether apoptosis and the activation of caspase-3 (Casp-3) induced by testosterone in high concentrations involves increments in tumor necrosis factor-α (TNF-α) concentrations and angiotensin-converting enzyme (ACE) activity in cardiomyocytes (H9c2) cell cultures. Cardiomyocytes were treated with testosterone (5 × 10−6 mol/L), doxorubicin (9.2 × 10−6 mol/L), testosterone + etanercept (Eta; 6.67 × 10−5 mol/L), testosterone + losartan (Los; 10−7 mol/L), and testosterone + AC-DEVD-CHO (10−5 mol/L; Casp-3 inhibitor). Apoptosis was determined by flow cytometry and by the proteolytic activity of Casp-3. We demonstrated that incubation of H9c2 cells for 48 h with testosterone causes the apoptotic death of 60–70% of the cells and co-treatments with Eta, Los, or AC-DEVD-CHO reduced this effect. Testosterone also induces apoptosis (concentration dependent) and increases the proteolytic activity of Casp-3, which were reduced by co-treatments. TNF-α and ACE activities were elevated by testosterone treatment, while co-treatment with Los and Eta reduced these effects. We concluded that an interaction between testosterone, angiotensin II, and TNF-α induced apoptosis and Casp-3 activity in cultured cardiomyocytes, which contributed to the reduced viability of these cells induced by testosterone in toxic concentrations.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3