Effect of copper overload on the survival of HepG2 and A-549 human-derived cells

Author:

Arnal N1,de Alaniz MJT1,Marra CA1

Affiliation:

1. Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina

Abstract

We investigated the effect of copper (Cu) overload (20–160 µM/24 h) in two cell lines of human hepatic (HepG2) and pulmonary (A-549) origin by determining lipid and protein damage and the response of the antioxidant defence system. A-549 cells were more sensitive to Cu overload than HepG2 cells. A marked increase was observed in both the cell lines in the nitrate plus nitrite concentration, protein carbonyls and thiobarbituric acid reactive substances (TBARS). The TBARS increase was consistent with an increment in saturated fatty acids at the expense of polyunsaturated acids in a Cu concentration-dependent fashion. Antioxidant enzymes were stimulated by Cu overload. Superoxide dismutase activity increased significantly in both the cell lines, with greater increases in HepG2 than in A-549 cells. A marked increase in ceruloplasmin and metallothionein content in both the cell types was also observed. Dose-dependent decreases in α-tocopherol and ferric reducing ability were observed. Total glutathione content was lower in A-549 cells and higher in HepG2. Calpain and caspase-3 were differentially activated in a dose-dependent manner under copper-induced reactive oxygen species production. We conclude that Cu exposure of human lung- and liver-derived cells should be considered a reliable experimental system for detailed study of mechanism/mechanisms by which Cu overload exerts its deleterious effects.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Reference96 articles.

1. Trace elements in human physiology and pathology. Copper

2. Relevance, essentiality and toxicity of trace elements in human health

3. Iron and copper metabolism

4. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford, NY, USA: Oxford Science Publications, 1999, pp.48–54.

5. Copper, oxidative stress, and human health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3