Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities

Author:

Bressler Joseph P1,Olivi Luisa2,Cheong Jae Hoon3,Kim Yongbae4,Maerten Alex2,Bannon Desmond5

Affiliation:

1. Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Kennedy-Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Kennedy-Krieger Institute, Baltimore, MD 21205, USA;

2. Kennedy-Krieger Institute, Baltimore, MD 21205, USA

3. School of Pharmacy, Sahmyook University, Seoul, Republic of Korea

4. Department of Preventive Medicine, Soonchunhyan University, Chunan City, Republic of Korea

5. US Army, Aberdeen Proving Ground, MD 21010, USA

Abstract

The transport of essential metals and other nutrients across tightmembrane barriers such as the gastrointestinal tract and blood-brain barrier is mediated by specific transport mechanisms. Specific transporters take up metals at the apical surface and export them at the basolateral surface, and are involved in their intracellular distribution. Transporters for each of the major essential metals, calcium, iron and zinc, have been identified. These transporters also mediate the transport of non-essential metals across tight membrane barriers. For example, the intestinal iron transporter divalent metal transporter 1 mediates the uptake of lead and cadmium. The levels of essential metals are strictly regulated by transporters. When dietary levels of essential metals are low, levels of the corresponding transporters increase in the intestine, after which there is a greater potential for increased transport of toxic metals. In the brain, the strict regulation of metals prevents injury that potentially would result from oxidative damage induced by the essential metals iron, copper and zinc. Indeed, the oxidative damage found in neurodegenerative diseases is likely to be due to higher levels of these metals. Involvement of intracellular transporters for copper and zinc has been shown in animal models of Alzheimer's disease, raising the possibility that higher levels of iron, zinc and copper might be due to a disruption in the activity of transporters. Accordingly, exposure to toxicants that affect the activity of transporters potentially could contribute to the aetiology/progression of neurodegenerative diseases.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3