Impaired cholinergic mechanisms following exposure to monocrotophos in young rats

Author:

Sankhwar Madhu Lata1,Yadav Rajesh S1,Shukla Rajendra K1,Pant Aditya B1,Singh Dhirendra1,Parmar Devendra1,Khanna Vinay K1

Affiliation:

1. Indian Institute of Toxicology Research (A Constituent Laboratory of Council of Scientific and Industrial Research, New Delhi), MG Marg, Lucknow, India

Abstract

Studies on the neurobehavioral toxicity of monocrotophos, an organophosphate, have been carried out on rats following their exposure from postnatal day (PD) 22 to PD 49 to investigate whether neurobehavioral changes are transient or persistent. Exposure of rats to monocrotophos (0.50 or 1.0 mg/kg body weight, p.o.) decreased body weight (10% and 30%) and impaired grip strength (28% and 32%) and learning ability (65% and 68%) at both the doses, respectively in comparison to controls. A trend of recovery was observed in body weight and learning, while decrease in grip strength persisted in rats 15 days after withdrawal. Activity of acetylcholinesterase was decreased in frontal cortex (36% and 67%), hippocampus (21% and 49%) and cerebellum (29% and 51%) in monocrotophos-treated rats at both the doses. The decrease in the activity of acetylcholinesterase persisted in frontal cortex and hippocampus; however, a trend of recovery was observed in cerebellum 15 days after withdrawal. Binding of3H-quinuclidinyl benzilate (3H-QNB) to frontocortical (19% and 35%), hippocampal (32% and 39%) and cerebellar (19% and 28%) membranes was decreased in monocrotophos-treated rats compared to controls. The decrease in the binding of3H-QNB persisted in frontocortical, hippocampal and cerebellar membranes 15 days after withdrawal. The results suggest that repeated exposure to monocrotophos in rats may cause behavioral and neurochemical modifications which may persist even after withdrawal. The findings are of concern in view of the high consumption of monocrotophos in many countries.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3