Long-term treatment with finasteride induces apoptosis and pathological changes in female mice

Author:

Alkahtane AA1,Albasher G1ORCID,Al-Sultan NK1,Alqahtani WS2,Alarifi S1,Almeer RS1,Alghamdi J1,Ali D1,Alahmari A3,Alkahtani S1

Affiliation:

1. Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

2. Department of Forensic Biology, College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia

3. Department of Biology, Science College, King Khalid University, Abha, Saudi Arabia

Abstract

Androgenetic alopecia is the most common type of alopecia, and it affects humans of both genders. Finasteride is a type II selective 5α-reductase inhibitor that is administered orally to treat androgenetic alopecia and benign prostatic hyperplasia in human males. However, its effect on the vital organs of females is unknown. This study was designed to investigate the effects of finasteride on the vital organs such as liver, kidney, and heart of female mice. To study the prospective effects of finasteride, female mice were orally administered two doses of finasteride (0.5 and 1.5 mg/kg) once daily for 35 days, and serum levels of various biochemical parameters and histopathology of various organs were examined. The results showed that serum levels of alkaline phosphatase were significantly increased by both high- and low-dose finasteride, whereas cholesterol was significantly increased by the high dose only. Creatine kinase was significantly increased by the high and low doses, whereas glucose was significantly decreased by both doses. Histopathological analysis and DNA damage assays showed that finasteride has adverse effects within both the short and the long periods in female mice. In addition, the proapoptotic genes Bax and caspase-3 were significantly increased by high dose finasteride, whereas the antiapoptotic gene Bcl-2 was significantly decreased by the low and high doses. In conclusion, finasteride is not currently approved for therapeutic use in females, and the findings in this study suggest caution in any future consideration of such use.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3