Reproductive toxic effects and possible mechanisms of zonisamide in male rats

Author:

Karaduman AB1,Kilic V2,Atli-Eklioglu O1,Baysal M1,Aydogan-Kılıc G2,Ucarcan S2,Ilgin S1ORCID

Affiliation:

1. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey

2. Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey

Abstract

Zonisamide (ZNS) is an anticonvulsant which is used to treat the symptoms of epilepsy. Although it is frequently used during reproductive ages, studies that investigated the effects of ZNS on reproductive system are limited. Therefore, we aimed to assess the effects of ZNS on male reproductive system by oral administration to rats in 25, 50, and 100 mg/kg doses for 28 days. After the exposure period, sperm concentration, motility, morphology, and DNA damage, as biomarkers of reproductive toxic effects, were determined, and histopathological examination of testis was performed. In addition, levels of the hormones that play a role in the regulation of reproductive functions, such as follicle-stimulating hormone, luteinizing hormone (LH), and testosterone were measured and the levels of oxidative stress biomarkers that take part in the reproductive pathologies such as catalase, superoxide dismutase, glutathione, and malondialdehyde, were determined. Reproductive toxic effects related to ZNS administration were shown by the significant decrease of sperm concentration and normal sperm morphology in ZNS groups. Additionally, pathological findings were observed in the testicular tissues of ZNS-administered groups dose dependently. In addition, serum LH and testosterone levels were significantly decreased in the ZNS groups. Decreased catalase activities and increased malondialdehyde levels in ZNS groups were evaluated as oxidative stress findings in the testis tissue. It could be expressed that ZNS administration induced dose-dependent reproductive toxic effects in rats, and pathological findings associated with the reproductive system could be the result of that hormonal changes and testicular oxidative stress, which in turn might be considered as possible mechanisms of male reproductive toxicity.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3