Insulin-like growth factor reduced against decabromodiphenyl ether-209–induced neurodevelopmental toxicity in vivo and in vitro

Author:

Yang Yuanxiang12,He Qianyun1,Zhang Zhengyu3,Qi Chunli4,Ding Lina1,Yuan Tingting1,Chen Yanhong1,Li Zhihua1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

2. The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital

3. Guangzhou Institute of Cardiovascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

4. Institute of Laboratory Animal Sciences, Jinan University, Guangzhou, China

Abstract

Objective How to reduce the neurodevelopmental toxicity of decabromodiphenyl ether (PBDE-209) remains unclear. This study investigated neurodevelopmental toxicity of PBDE-209 and the protective effects of insulin-like growth factor-1 (IGF-1) Methods Pregnant Sprague–Dawley rats were treated with PBDE-209 and IGF-1, and the offspring were subjected to the Morris Water Maze test. Hippocampal neurons were cultured with PBDE-209 and IGF-1 or the PI3K inhibitor or MEK inhibitor for cell viability, apoptosis, immunofluorescence, and Western blot assays. Results Prenatal PBDE-209 exposure impaired the learning and memory ability of rats by delaying the mean latency to the platform compared, whereas prenatal treatment with IGF-1 treatment improved the learning and memory ability. In vitro, treatment of primary cultured hippocampal neural stem cells (H-NSCs) with PBDE-209 reduced cell proliferation and differentiation, but induced apoptosis. In contrast, IGF-1 treatment antagonized the cytotoxic effects of PBDE-209 in H-NSCs in vitro. At the gene level, IGF-1 inhibition of PBDE-209–induced cell cytotoxicity was through the activation of the PI3K/AKT and MEK/ERK signaling pathways in vitro because the effect of IGF-1 was blocked by the AKT inhibitor LY294002 and the ERK1/2 inhibitor PD98059. Conclusion Prenatal PBDE-209 exposure impaired the learning and memory ability of rats, whereas IGF-1 treatment was able to inhibit the neurodevelopmental toxicity of PBDE-209 by activation of the PI3K/AKT and ERK1/2 cell pathways.

Funder

Guangdong Province Nature Science Foundation

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3