4-Methylpyrazole protects against acetaminophen hepatotoxicity in mice and in primary human hepatocytes

Author:

Akakpo JY1,Ramachandran A1,Kandel SE1,Ni HM1,Kumer SC2,Rumack BH3,Jaeschke H1ORCID

Affiliation:

1. Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA

2. Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA

3. Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA

Abstract

Liver injury due to acetaminophen (APAP) overdose is the major cause of acute liver failure in the United States. While treatment with N-acetylcysteine is the current standard of care for APAP overdose, anecdotal evidence suggests that administration of 4-methylpyrazole (4MP) may be beneficial in the clinic. The objective of the current study was to examine the protective effect of 4MP and its mechanism of action. Male C57BL/6J mice were co-treated with 300 mg/kg of APAP and 50 mg/kg of 4MP. The severe liver injury induced by APAP at 6 h as indicated by elevated plasma alanine aminotransferase activities, centrilobular necrosis, and nuclear DNA fragmentation was almost completely eliminated by 4MP. In addition, 4MP largely prevented APAP-induced activation of c-Jun N-terminal kinase (JNK), mitochondrial translocation of phospho-JNK and Bax, and the release of mitochondrial intermembrane proteins. Importantly, 4MP inhibited the generation of APAP protein adducts and formation of APAP-glutathione (GSH) conjugates and attenuated the depletion of the hepatic GSH content. These findings are relevant to humans because 4MP also prevented APAP-induced cell death in primary human hepatocytes. In conclusion, early treatment with 4MP can completely prevent liver injury after APAP overdose by inhibiting cytochrome P450 and preventing generation of the reactive metabolite.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3