Alendronate promotes the gene expression of extracellular matrix mediated by SP-1/SOX-9

Author:

Wang L1,Mi B2,Zhang Y3,Yan H4,Zhu H5ORCID

Affiliation:

1. Department of Surgery, Shandong Medical College, Linyi, Shandong, China

2. Department of Trauma Surgery, Linyi People’s Hospital, Linyi, Shandong, China

3. Department of Oncology, Linyi People’s Hospital, Linyi, Shandong, China

4. Department of Internal Medicine, Shandong Medical College, Linyi, Shandong, China

5. Department of Femoral Head Specialist, Linyi People’s Hospital, Linyi, Shandong, China

Abstract

Background and purpose: Osteoarthritis (OA) is a disease with significant degenerative changes of articular cartilage, which is reported to be closely related to the integrity of chondrocytes extracellular matrix (ECM). Alendronate belongs to the family of bisphosphonates with promising cartilage repair function. In the present study, the effects of Alendronate on the gene expression of chondrocytes ECM and the potential mechanism will be investigated to explore the potential therapeutic property of Alendronate on OA. Methods: Human SW1353 chondrocytes were stimulated with 1 and 2 μM Alendronate for 12 h. The gene expression of Col2α1, COL9α2, and Acan in the treated chondrocytes was determined by qRT-PCR. QRT-PCR and western blot analysis were used to evaluate the expression level of SOX-9 in the treated chondrocytes. The expression level of SP-1 was checked by qRT-PCR and immunostaining. SiRNA against SP-1 was transfected into chondrocytes to knockdown the expression of SP-1. The levels of p-ERK1/2 and total ERK1/2 were examined using western blot analysis. TNF-α was used to induce an OA-like in vitro model in the chondrocytes for therapeutic evaluations. Results: Treatment with Alendronate increased the levels of ECM related genes ( Col2α1, COL9α2, and Acan) in a dose-dependent manner through increasing the expression of SOX-9, a central regulator of ECM genes. Additionally, our findings demonstrate that the effects of Alendronate in the expression of SOX-9 are mediated by SP-1 as silencing of SP-1 abolished these effects. Notably, Alendronate increased the phosphorylation of ERK1/2 and inhibition of ERK1/2 using its specific inhibitor U0126 blocked the expression of SP-1. Finally, we found that treatment with Alendronate could rescue TNF-α-induced reduction of Col2α1, COL9α2, Acan and SOX-9. Conclusion: Our data indicated that Alendronate might promote the gene expression of extracellular matrix through SOX-9 mediated by the ERK1/2/SP1 signaling pathway.

Funder

the Program of Linyi Science and Technology Innovation Development

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3