Ethanol attenuates vasorelaxation via inhibition of inducible nitric oxide synthase in rat artery exposed to interleukin-1β

Author:

Yuui K,Kudo R,Kasuda S,Hatake K1

Affiliation:

1. Department of Legal Medicine, Nara Medical University, Kashihara, Nara, Japan

Abstract

Nitric oxide produced by inducible nitric oxide synthase (iNOS) regulates sepsis-induced hypotension. During septic shock, interleukin (IL)-1β is synthesized in endothelial cells and smooth muscle cells by endotoxin. Ethanol (EtOH) suppresses endotoxin-induced hypotension. The present study aimed to elucidate the effect of EtOH on gradual relaxation and iNOS expression induced by IL-1β in isolated rat superior mesenteric arteries (SMAs). Exposure to IL-1β–induced contraction in SMA rings, followed by a gradual relaxation of phenylephrine precontracted tone. Contraction was abolished by indomethacin (IM), cycloheximide (Chx), and endothelium denudation. In contrast, the gradual relaxation was abolished by NOS inhibitors, Chx, endothelium denudation, and inhibited by EtOH (50 and 100 mM). However, IM had no effect on relaxation. Western blot analysis demonstrated that iNOS expression was induced by IL-1β and was inhibited by EtOH and endothelium denudation. Furthermore, messenger RNA expression of iNOS, but not endothelial NOS, was inhibited by EtOH. These data suggest that IL-1β–induced contraction is mediated by thromboxane A2, whereas IL-1β–induced relaxation occurs via NO derived from iNOS. The endothelium plays an important role in vasorelaxation. Taken together, EtOH inhibits IL-1β–mediated vasorelaxation by suppressing endothelium iNOS expression. This study provides the first evidence of EtOH -induced inhibition of IL-1β–mediated vasorelaxation.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3