Idarubicin-induced oxidative stress and apoptosis in cardiomyocytes: An in vitro molecular approach

Author:

Zhang Yang1ORCID,Li Qi12,Xu Dongsheng3,Li Tengteng1,Gu Zehui2,Huang Peng1,Ren Liqun1ORCID

Affiliation:

1. Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China

2. Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China

3. Cancer Center, The First Hospital of Jilin University, Changchun, China

Abstract

Idarubicin (IDA) is an anthracycline antibiotic, frequently used for the treatment of various human cancers. In vivo rodent model studies have identified a variety of possible adverse outcomes from IDA including heart effects like increased heart weights, myocardial histopathological injury, electrocardiogram abnormalities, and cardiac dysfunction. Despite significant investigations, the molecular mechanisms responsible for the cardiotoxicity of IDA have not been fully clarified. The aim of the current study was to investigate the effects of IDA on the HL-1 cardiac muscle cell. Different concentrations of IDA (10−6, 10−5, 10−4, and 10−3 M) were used at different time (6, 12, 24, and 48 h) periods, and the Cell Counting Kit-8 (CCK-8); 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe method; and enzyme-linked immunosorbent assay (ELISA) were used to detect the oxidative stress level. In addition, we used network analysis to predict IDA-induced cardiotoxicity. The TUNEL assay, qRT-PCR, ELISA assay, and Western blotting detection of related apoptotic factors including caspase family, Bax, and Bcl-2. Overall, we found that IDA was generally more toxic at high concentrations or extended durations of exposure. At the same time, IDA can increase the content of reactive oxygen species (ROS), malondialdehyde (MDA), and decrease the level of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in cells, and increase the content of lactate dehydrogenase (LDH) and nitric oxide synthase (NOS) in the medium. Network analysis showed that the apoptosis signaling pathway was activated; specifically, the caspase family was involved in the signal pathway. The results of the TUNEL assay, qRT-PCR, ELISA, and Western blot found that IDA can activate apoptotic factors. The mechanism may be related to the activation of apoptosis signaling pathway. These results indicate that the cardiotoxic effects of IDA are most likely associated with oxidative stress and ROS formation, which finally ends in apoptotic factors’ activation and induction of cell apoptosis.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3